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We characterize a porous medium as a statistically homogeneous continuum with local fluctuations in
physical parameters. We consider (1) the steady-state flow of a single incompressible fluid through the
medium, and (2) the dispersion of a passive tracer in such a flow. For each problem we average a path-
integral expression for the Green’s function over parameter fluctuations, and obtain large-distance,
long-time effective parameters via Feynman’s variational method. For the permeability problem, and
the tracer problem at small Peclet number P, the variational results are consistent with results obtained
by first-order perturbation theory. For the tracer problem at large P, the variational method predicts the
expected linear dependence of the effective dispersion tensor on P, which perturbation theory does not.
This indicates that, for the problems considered here and others like them, a first-order perturbation ex-

pansion can be of limited utility.

PACS number(s): 47.55.Mh, 05.40.+j

I. INTRODUCTION

The study of flow through a porous medium is of great
practical interest in many areas of applied physics, in-
cluding chromatography, filtration processes, ground-
water hydrology, and petroleum engineering. The gen-
eral problem [1] can be thought of as three more specific
problems, depending on the length scale at which the
medium is examined. Over “microscopic” scales, of the
order of microns, the medium is grainy and highly irregu-
lar. Flow of a single fluid is governed by the Stokes equa-
tions, which are solved in the pores with the conditions
that flow is incompressible and that velocity is zero at the
pore walls. Due to the microscopic irregularity, it is im-
practical to obtain the exact flow field. One can get bulk
properties instead, by averaging over a volume large
enough to contain a statistically representative selection
of pores. Such a volume is said to be of “mesoscopic” ex-
tent. Over mesoscopic scales, of the order of centimeters,
the medium appears to be a homogeneous continuum,
and flow of a single fluid is governed by Darcy’s law.
“Macroscopic” lengths are of the order of geological irre-
gularity, i.e., meters and up. Over macroscopic scales,
the medium appears to be a heterogeneous continuum,
and flow of a single fluid is governed by a local version of
Darcy’s law.

Suppose a passive tracer is released into a single fluid
flowing through the medium. Dispersion of this tracer is
governed at microscopic scales by a convection-diffusion
equation (CDE), in which the diffusion constant is the
molecular diffusion constant of the tracer in the fluid, and
the drift velocity is the Stokes flow field. It is impractical
to obtain an exact microscopic solution in this case, as in
the previous case; however, bulk properties are again ob-
tainable by averaging over the irregularities. The equa-
tion governing dispersion of a passive tracer at mesoscop-
ic scales is also a CDE. The velocity comes from Darcy’s
law. The dispersion tensor has an isotropic part due to
molecular diffusion, and an anisotropic part due to con-
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vective dispersion. The latter quantity is a function of
the velocity u [2]. If diffusion is more important than
convection in moving a tracer particle around the medi-
um, then convective dispersion is proportional to u?2. If
convection is more important than diffusion, convective
dispersion is proportional to u, and is due primarily to
mechanical effects, i.e., to splitting (for compressible flow)
and twisting of streamlines. For very large u, convective
dispersion parallel to u is proportional to u Inu, although
convective dispersion normal to u is still proportional to
u. Over macroscopic scales, dispersion of a passive tracer
is governed by a local CDE, in which the velocity and
(therefore) the convective dispersion vary with position.

Our model of disorder over macroscopic scales treats
the disorder as a random function of position. Perturba-
tion expansions have proven to be useful for the extrac-
tion of information from such models [3,4]. Neverthe-
less, perturbation expansions suffer from several
shortcomings, e.g., the perturbative parameter must be
small, and calculations become more difficult with in-
creasing order in the expansion. In an attempt to avoid
these difficulties, we take a somewhat different approach.
The formulation is based on path integrals [5], and allows
us to average over all fluctuations at once, instead of or-
der by order in a perturbation expansion. We use
Feynman’s variational method to extract information
about the average behavior of the system.

II. STATEMENT OF PROBLEM

The flow of a single fluid through an isotropic porous
medium is governed at macroscopic scales by Darcy’s
law,

(x)
u(x)=— L2 y4(x) ,
Ve

2.1)
where u(x) is the local velocity, x(x) is the local permea-
bility, p is the viscosity, and ¢(x) is the local pressure.
The flow is assumed to be incompressible, i.e.,
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V-u(x)=0. (2.2)

We suppose that «(x) is a random variable, and discuss
its probability distribution in Sec. III. Combination of
Darcy’s law and the incompressibility condition gives

V-k(x)Vo(x)=0 . (2.3)

We wish to average the Green’s function for this equation
over fluctuations in permeability.

The transport of a tracer by an incompressible fluid is
governed at macroscopic length scales by a CDE,

9 L u(x)-V—V-D(x)V |c(x,1)=0 ,

3 2.4)

where u(x) is the local velocity, D(x) is the local disper-
sion tensor, and c (X, t) is the mass concentration of tracer
in the fluid. We suppose that u(x) is a random variable,
and discuss its probability distribution in Sec. III. Since
convective dispersion is a function of velocity, we expect
in general that the former will be a random variable like
the latter, and that the fluctuations of the two will be
correlated. We wish to average the Green’s function for
(2.4) over fluctuations in velocity and dispersion.

III. STATISTICAL MODELS

Law [6] was the first to analyze statistically the varia-
tion in permeability of a region of macroscopic extent.
He deduced from core data that the horizontal fluctua-
tions of permeability in a stratified bed are log-normally
distributed. Although there are some differences on the
matter [7], several subsequent studies generally agree
with Law, while in some respects refining his model: for
example, the vertical fluctuations in a stratified bed are
also thought to be log-normally distributed, with a verti-
cal correlation length shorter than the horizontal [3]. As
a starting point for calculations, we shall assume that the
medium is isotropic and that the permeability fluctua-
tions are log-normally distributed. In other words, if
k(x) is the permeability, with « its most probable value,
then

K(x)

f(x)=1n (3.1)

Ko

is a Gaussian random variable of mean zero, the correla-
tion function of which in Fourier space is

We cannot rely on direct experimental measurement
for our model of the velocity field, because there is little
information of that kind available. Instead, we will ob-
tain velocity as a function of permeability, using the con-
dition of incompressibility to eliminate the pressure from
Darcy’s law. Expanding velocity, permeability, and pres-
sure in powers of f,

(3.2)

u(x)=uny+u(x)+Iuyx)+ -+,
K(X):KO+K0f(X)+%K0f2(X)+ SR

p(X)=po(x)+p;(x)+1p,(x)+ -,

we obtain from Darcy’s law one equation for each order
in the expansion:

Ko
U= —';VPO(X) >

Ko Ko
u,(x)= —If(x)Vpo(x)——;Vpl(x) ,

K, K,
uz(x)=—;Osz(x)—2;qf(x)Vpl(x)

K
~f2(x)—“£Vpo(x) ,

and so on. Using the fact that the flow is incompressible
at each order, we eliminate the pressure order by order to
obtain

e @ -G
o

(3.3)

from which it follows that the correlation function in
Fourier space is

Cuy(@puy;(qy))=(2m)%8(q; +q,)p(g?)
X[u,+(I-4,q,)];[(I—qq, ) uel; s
(3.4)

plus terms of higher order in p(g?) [8]. Although derived
here from a perturbation expansion of Darcy’s law, (3.3)
is a very general form for the velocity fluctuation. The
tensor I—qq ensures that the fluctuation is incompressi-
ble, and u, appears because the problem’s only preferred
direction is that of bulk flow. The tensor in the square
brackets determines the statistical properties of the fluc-
tuation. The form of this tensor could be determined
theoretically, for example, by expanding Darcy’s law as
we have done here, or by assuming Gaussian fluctuations,
i.e., keeping only the first term in (3.3). Its form could
also be measured experimentally, at least in principle.
While an expansion of Darcy’s law implicitly assumes
that the fluctuations are small, neither Gaussian fluctua-
tions nor experiment are limited in this way.

IV. PATH-INTEGRAL FORMULATION

The Green’s function for Eq. (2.4), G(x,xq,t —t;), is
defined by

%+u(x)-V—-V'D(x)*V G (X,Xp,! — 1)

=8(x—x)8(t —15), (4.1)

and is no more than the probability that a tracer particle
starting at (#(,X,) will end up at (z,x). This probability is
in turn the sum over all possible paths of the probability
that the tracer particle will take a particular path from
(tg,Xq) to (t,x). Equation (4.1) has the following path-
integral solution [5,9,10]:
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x(t,)= xp

G(Xf,XO,tf—to)=fx“0) Dxexp

’ @

It is useful to see how (4.2) is obtained. Suppose we wish to know the probability that a tracer particle will follow a
given path x(¢) from (zy,x,) to (z;,x;). We divide the time interval into n equal segments, of length At =t,—1¢,/n, and
approximate the path by n +1 points [¢, =t,+kAt, x;, =x(¢; )], where 0=k <n. For convenience, we relabel 7, =,
x, =x;. The probability p(k —1,k) that a particle starting at (¢, _;,X, ;) will end up at (#;,x; ) can be obtained from
4.1):

1
(k—1,k)=
P [47A1]P72[ detD(x; )]/
At | X 7 X 1 X~ Xg—1
X exp' n Ar u(xy) D(x,) At u(xy) ] ) (4.3)

and the probability that the particle will hit each point is [} =;p(k —1,k). To get the Green’s function, we integrate
this over all intermediate positions:

1 1
G(xp Xty —tg)= [dx; -+ [dx,_
(xy oty —10)= [ dxy - [dx '(47A1[detD(x))]'?  (47A1)*?[ detD(x,)]"?

Xp —Xp —
At

X~ Xg—1
At

X exp —%i S —u(x;) .D(ik). 1~—\1(xk)
k=1

] . (4.4)

This is the proper way to interpret (4.2). Equation (4.4) can be shown to obey (4.1) to first order in At, assuming that
the irregularity is relatively well behaved [10]. We are obliged to use D(x;) in (4.4), instead of, say, D(x;_,),
D(i[x;_;+x; 1), or 1[D(x;)+D(x;_,)], because the alternatives define Green’s functions which do not obey (4.1). If
V-u(x) were nonzero, it would be necessary to make a similar observation about u(x; ).

It is difficult to average over the parameter fluctuations as they appear in Eq. (4.4). However, since (4.3) can be
rewritten

dpi
(2m)}

the Green’s function is equally well represented by

dpo dp,— z
Gxpxpt;—t0)= [dxy - [dx, . [ =5 - amp T2

X "Xk -1
At

exp | —A? | Pr—1'D(xp ) pr—1 —iPk -1 —u(x)

plk—1,0)= [ ] : (4.5)

Pk —1'D(xg ) py -y

X ~Xp—1

A7 —ulxy)

—ipg—1°

(4.6)

which is easier to work with. This is sometimes called the momentum representation of (4.4). The more elegant version
of (4.6) is

x(tf)=xf
G(xf'xo’tf—t()):fx(to>=xo Dx [ Dpexp f dr |p

Let us suppose that the dispersion tensor is a constant D, and that the velocity varies as u(x)=u,+u,(x). We aver-
age G(x rXopls —t,) over fluctuations in velocity to obtain

(7)-D(x)-p(1)—ip(T)- —?—u(x)

} . 4.7)

(G(xf,xo,tf—t0)>=fDfoprul exp [—%fdxdx’ul(x)-A”'(x—x’)-ul(x’)J
X exp [—fdr
=fDfopexpl—de

uy—u(x)

]

—%fdrdr’p('r)-A[X(T)-—x('r')]-p('r')} , (4.8)

p(7)-Dy-p(7)—ip(T)- ar

. d
p(7)-Dy-p(T)—ip(7)- ﬁ—uo
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where
— dg iq-x 2
A(x)=
(x) f(27r)de plg?)

X [ug-(I=Gq) J[(I—qq)-u,] . 4.9)

It will be noted in (4.8) that we assume u(x) is a Gauss-
ian random variable.

To give the permeability problem a path-integral for-
mulation, we use a trick previously employed by Drum-
mond and Horgan [11]. This problem is governed by Eq.
(2.3), for which we can define a Green’s function,

V-k(X)VG (X,%5)= —8(x—X,) . (4.10)

But there is a diffusion problem associated with (2.3):

i—V-K(x)V o(x,t)=0,

3 (4.11)

for which we can also define a Green’s function,

%-V-K(x)v G (x,Xp,t —tg)=08(x—x,)6(t —¢,) .

(4.12)

These two problems are closely connected. For example,
if

lim 99%:) g’:’” 0,
t—

then a solution of (4.11) which obeys a given set of
boundary conditions in space will relax to a solution of
(2.3) with the same boundary conditions in the limit of

x(t,)=x

A by
G(xf,xo,tf—to)zfma):x() Dfopexp [— f‘o dr

large ¢; in addition, if

lin'(l)G(X,XQ,t)QS(X_xo) ’
t—

lim G (x,xq,¢t)—0 ,

t— o0

then

G(x,xo)zfowdtG(x,xo,t) . 4.13)

If we average over fluctuations, we expect that (4.10) will
look like

kegV{ G (x,%9)) = —8(x—x¢) , (4.14)
and (4.12) will look like
i~;ce,,fV2 (G (x,xp,t —14))
ot
=8(x—x0)8(t —1y) . (4.15)

Equation (4.13) leads us to expect that the effective pa-
rameters in (4.14) and (4.15) are the same. Because of the
similarity of the permeability problem and its associated
diffusion problem, we assume that our already-obtained
path-integral formulation of the latter will serve as a suit-
able formulation of the former. Equation (4.12) can be
written

D VK]V —k()V? |G (%, %0t — 1)

ot
=8(x—xy)0(t —t,), (4.16)
indicating that its path-integral version is
2 . dx
k(x)p“(r)—ip(7)- —E+Vx(x) . 4.17)

In order to obtain more tractable equations, and results directly comparable to those of previous investigators, we will
use a Gaussian distribution to approximate the actual log-normal distribution of «(x). This approximation is reason-
able if the variance of the distribution is small compared to the mean. Averaging (4.17) over fluctuations in permeabili-
ty will thus give

dxdx'p” Hx—x" )k, (X)k;(x")
(G(xf,xo,tf—to))=fDKlfDfopexp —f d 1 1

ZK(Z,

—fdr k(x)pX(r)—ip(r)- %—FVKI(X) |
— 2 . dx
—fDfopepr——de KoP (T)—zp(r%z

+1 [drdrkd[pHr)—ip(r)-V][p*+)—ip(r)-V' Jp(x—x) ] . (4.18)
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V. VARIATIONAL METHOD

This procedure was developed by Feynman [12,13] as a
path-integral version of the variational method of quan-
tum mechanics. We start with the path integral for the
average Green’s function { G ), which we write

(GY=e %= [Dxe™, (5.1)

where S’ is a sort of action. If we have another action S,
which is simple and in some sense an approximation of
S’, Eq. (5.1) can be rewritten

—(s'=8%) —S
e—W'—e—W‘ fD e ’e
fDxe_ 4
=, WA< —(5'=5') ' (5.2)
where
e V4= [Dxe 4 (5.3)

The term of (5.2) in brackets can be thought of as the
—(8'~58,

average of e ), the weight for each path being

e 4, Now, for any set of real quantities { f}, we have
(e /y=e /), (5.4)

where the brackets denote a weighted mean. If S’ and
S, are both real, this inequality can be applied to (5.2),
allowing us to write

_ -w —(5'—5') -w, —(s'-=5")
W=e¢ "4(e ), >e e 474 (5.5)

e e

ie.,

WSW, +(S'=S ) =W . (5.6)

The values of any free parameters in W, are chosen to
make W4 a least upper bound for W.

The average Green’s functions in (4.8) and (4.9) are
written in the momentum representation, in which they
are complex; thus, we cannot apply (5.4) directly to them.
But that representation was used for computational con-
venience, and was not intrinsic to the problem. Equation
(4.2) is written entirely in terms of real quantities; averag-
ing over Gaussian fluctuations would not alter that fact,
and the treatment leading up to (5.6) could be directly ap-
plied to the result. Having properly obtained (5.6), we
can write a momentum-space version of it by defining

e_sl=poe_S , (5.7)

e_SA=poe_S‘ , (5.8)

Wa=W, +eW‘fDfopexp

—fd'r

sz(f)—ip(r)-%

and

_ [px[DpFe

(F), = fDfope’SA (5.9)
It follows from (5.7) and (5.8) that

(5'=S)e 4= [ Dp(S —§ e 4 (5.10)
to first order in (S —S ), and so (5.6) becomes

WW, +(S—S,) =W . (5.11)

The values of any free parameters in W, are chosen to
obtain the minimum upper bound at the distribution’s
point of maximum probability, as this is where the most
representative tracer particles would end up.

It might be illuminating to pause at this point and
reconsider what we have done. Our task is to approxi-
mate e ~%. The closer S, is to S’ in (5.2), the better we
can expect the bound in (5.5) to be. But it would be a
mistake to argue further, in too close an%logy to the stan-
dard quantum-mechanical case, that e 4 by itself is the
approximate Green’s function we seek. Consider an ex-
pansion of (5.2), by which we obtain a formal expression
for e ~ ¥ in terms of integrations we can do:

e W= VA1 (§'"=8, )+ 1S =S ) — - ],
(5.12)

Note that e Wa is only the zero-order term of this ex-
pansion and that a better approximation is obtained by
including the first-order term and an estimate of the
second-order term, as has been done in (5.5). In effect,

e “isa guess in our attempt to approximate ¢ ~ ¥, and

e  “Tis a refinement of that guess.

VI. CALCULATION OF EFFECTIVE
PERMEABILITY

With finite-range correlations in the permeability fluc-
tuations, at large enough length scales we expect the
porous medium to look like a homogeneous isotropic
continuum, and Darcy’s law with a global scalar permea-
bility, Eq. (4.14), should apply. Because of the close con-
nection between (4.14) and (4.15), a good choice for this
problem’s test action would therefore be

t
S A = f tofd T

xpz(f)—ip(r)-% . 6.1)

It follows from (4.18), (5.11), and (6.1) that we need to
calculate

X [(KO—K)fd’rpz('r)'—%fd'rdT'K(z)[pz('r)—ip(T)'V][pz(T')—ip(‘r')°V']p(x—x') ,  (62)
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where, according to (5.3) and (5.8),

2
W, =;1n(4m)+4"—m ,

(6.3)

with x=x,—x, and t=t,—t;. The resulting integrals
can be expanded in the limit of long times, keeping terms
of order x?/¢ but dropping those of order x2/12, so that

(0)k% | oW
Wa=W,+ |ko—k— "2 » 2 —aK—" : (6.4)
where
_ d
p(0)= (—2-7—:1);p(q2) (6.5)
This can also be written
x2
Weﬂ~=%ln(41TK1t)+:‘;—t , (6.6)
2

with suitably defined «, and «,. Since e et is not in
general a diffusive Green’s function, it does not immedi-
ately yield an effective diffusion constant k. However,
we have assumed that the best value of k.4 is obtained at
the distribution’s point of maximum probability, x=0.
This is equivalent to taking k.z=«;. The optimization
procedure reduces to

Y 6.7)
ok (©.
which implies
2p(0)k}
K?— K+ % =0 (6.8)

For p(0) > %, this equation has no roots, and the method
fails. (This should not surprise us. In approximating a
log-normal distribution by a Gaussian distribution, we al-
low some sites in the medium to have permeability values
less than zero. As p(0) increases from zero, the fraction
of sites with negative permeabilities also increases from
zero, to around 5% for p(0)=32. We cannot reasonably
believe the theory will work when a significant fraction of
sites is assumed to have permeability values that are
physically absurd.) While there is a double root and thus

|

an unambiguous solution for p(O):%, there are two roots
for 0=p(0) < 3:

| 8p(0)
3

=0

I+(=) (6.9)

Ky

We select «, because Inkj(k,)<Ink(k_) for
0=p(0)<3: while both «, and «_ are local minima, «
is the global minimum. In the limit of small p(0),
k(k=k ) can be expanded to give

|_pO) _plOP

3 6 (6.10)

KI(K=K+)=KO

To first order in p(0), this is the same as the perturbative
result obtained by King [4].

VII. CALCULATION OF EFFECTIVE
DISPERSION TENSOR

If the velocity fluctuations have correlations of finite
range, the averaged tracer problem will be governed at
large enough length and time scales by an effective CDE.
We expect that the effective velocity will be equal to the
mean velocity, since u(x) is assumed to consist of a mean
plus a Gaussian fluctuation, and the fluctuations should
cancel out on- average. We further expect that the
effective dispersion tensor will be diagonal, with com-
ponents parallel and normal to bulk flow, because on
average the medium looks like a homogeneous isotropic
continuum, and for such a medium the only preferred
direction is that of bulk flow. A reasonable choice for the
test action would therefore be

(Y y ax _
SA_fto d7 |p(7)-D-p(r)—ip(T) dr u ||, (7.1)
where

D=D10ngﬁoﬁo+Dlat(I—ﬁoﬁo) . (7.2)

Using this S, (4.8), and (5.11), we find that we need to
calculate

Wa=W,+e * [Dx[Dp [fd‘rp(T)'(DO—-D)'p(T)+%fd7'd1"p(7')-A(x—x')-p(T’)}

—fd*r

X exp

where, from (5.3) and (5.8),
1

D

—{—u
¢ 0

W, =3In(4m0)+ L In( detD) + 7 .

p(7)-D-p(7)—ip(7)-

=—u,

} , (7.3)

(7.4)

We substitute into the resulting integrals x=uy +y, and expand in the limit of long times, keeping terms of order y*/¢

but dropping those of order y?/t2. Defining for convenience
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the result is
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2)2,2

dq ,. (1=p%)ug aw ,

= —Diong +
Weﬂ' WA + DOlong Dlong f (217_)3 P(‘I )q'D'q—iuo'q aDlong
2 2y, 2
dg 2 H- (l—ﬂ )uo aWA
— +1 . 7.5
| Dot P f (2m)? ple) q'D-q—iuyq | 3Dy, 7
[
This can also be written disorder and D, is the molecular diffusion constant of
1 1 the tracer in the fluid. In such flow regimes, v*(0)+ 1 will
W g=3 In(4mt)+ 1 In( detDIH—Zy-F‘y , (7.6)  be around 20 [3] or 30 [14]; we will take 26, i.e., v(0)=S5,
2

with suitably defined D, and D,. In this case, we cannot
pick D, to be the effective dispersion tensor D4, because
(7.6) tells us its determinant only, and not its individual
components. We are thus obliged to take D, as the
effective dispersion tensor. This D, can be thought of as
the dispersion tensor of a diffusive Green’s function e "2
which bounds e_W“’, and therefore e ¥, from below.
We choose D to make e "2 a maximum lower bound at
the distribution’s point of maximum probability y=0, or,
in other words, we fix D by minimizing J In( detD,) with
respect to variations in Do, and Dy,. This can be done
numerically.

We will take for our correlation function a simple
cutoff in Fourier space:

Po g<A

PEI=10 g>A. (7.7)

Although this oscillates in coordinate space, the oscilla-
tions are exponentially damped to zero. It is easier to do
the calculations for this correlation function than for an
alternative such as poA*/(g>+A?? and there is no
significant change in the final results. Having chosen
p(g?), the integrals of (7.5) can be expressed in terms of
three quantities. The first, ¥(0), is a measure of the an-
isotropy of Dy,

D
V(0)+1=—208 (7.8)
Olat
The second is the mesoscopic Peclet number P,
uyL
p=-0me (7.9)
D Olat

This measures the competition between convection and
dispersion over length scales L., characteristic of the
mesoscopic disorder. The third, p(0), is a measure of the
fluctuation strength, and is defined in (6.5).

Most cases of interest will be such that D, is roughly
proportional to the first power of the microscopic Peclet
number

Pmicro = uOL micro /D mol >

where L ;... is a length characteristic of the microscopic

as a representative value. The mesoscopic Peclet number
will be approximately proportional to the ratio of the
length scales involved:

L

meso

P
L

(7.10)

micro

We expect P to be fairly large, but it will also prove in-
teresting to examine effective dispersion for P—0. Note
that u, does not disappear. Since we measure dispersion
constants in units of Dy, the effective dispersion con-
stants will have the same dependence on u as does D, .
In other cases of interest, the convective dispersion tensor
is small and varies directly with the second power of the
microscopic Peclet number. For such cases, v(0) will be
roughly zero, and the mesoscopic Peclet number will be

L meso
b
L micro

which could be small or large.

The last parameter, p(0), is the mean-square deviation
of the natural-log, log-normal permeability distribution.
Some representative figures can be obtained from Law
[6], whose numbers are equivalent to 0.2=<p(0)<1.3;
from Dykstra and Parsons [15], whose numbers are
equivalent to 0.1=<p(0)<2.3; and from Arya et al. [16],
whose numbers are equivalent to 0.8 <p(0)=<2.6. Since
we have assumed p(0) to be small compared to 1, so that
we can use a Gaussian permeability distribution, and so
that we can get the velocity fluctuations in the tracer
problem from Darcy’s law, we see that the values of p(0)
for which we expect our method to work reasonably well
are at best on the lower end of values found in the field.
This does not mean that the method will fail absolutely
for values of p(0) of order 1, as it does in the permeability
problem. The velocity fluctuation model of (3.3) and (3.4)
is interesting of itself, without regard to its derivation
from Darcy’s law, for reasons mentioned at the end of
Sec. III. That p(0) is of order 1 means only that a
significant fraction of sites will have negative velocities.
This may be unusual, but it is not physically impossible in
a highly disordered medium.

If p(0) and P are very small in comparison to 1,
+In(detD,) appears to have only one minimum with

pP= uOLmeso =p

micro
D mol

(7.11)
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respect to variations in D),,, and D),,. The correspond-
ing solution D, approaches D, as p(0) and P approach 0.
For somewhat larger values of p(0) or P, a second local
minimum will appear. This second minimum may be-
come the global minimum for large enough values of p(0)
and P. In such a case, the method no longer gives the op-
timal bound for parameter values greater than the “criti-
cal” value at which the two minima are equal. We expect
that the effective dispersion tensor will be a continuous
function of its parameters, and take the first minimum as
our solution in any case.

Figures 1 through 4 show the components of the
effective dispersion tensor, measured in units of D, for
some representative values of the problem’s parameters.
For each set of graphs, v(0) and p(0) are fixed, and P is
allowed to vary. In the graphs of function value, the line
marked “optimum variation” is the value of 1 In(detD,)
minimized with respect to variations in Dy, and Dy,,.
This is called optimum from a consideration of (7.6):
since we expect the best information to be found at the
distribution’s peak, the minimized 1 In( detD,) is the best
estimate of J In( detD.g). The line marked “variation” is
the minimized value of 1In(detD,), the value of
1 In( detD.g) which we are obliged to use in order to have
D itself. Comparison of the two will indicate how
closely the information in the distribution’s peak agrees
with that in the distribution’s wings. The lines marked
“perturbation” were obtained by expanding the Green’s
function in powers of the velocity fluctuations, then
averaging and keeping terms of first order in p(0) (see the
Appendix).

The variational results have several interesting
features. As P—0, D is proportional to P? in all cases,
in agreement with perturbation theory and experiment.
For values of P less than 5 or 10, the perturbative results
for effective dispersion are slightly greater than the varia-
tional results. (Analogously, the first-order perturbative
estimate of permeability was greater than the variational
estimate of that quantity.) This means that 1 In( detD )
is greater for perturbation theory than for the variational
method, making the variational result a better upper
bound for W. On the other hand, given that our choice
for p(g?) is merely a well-informed guess, the numerical
results obtained by the two methods do not differ
significantly. For large P, D is proportional to P in
three of the four cases, with minor deviations for
p(0)=0.1. This result agrees with experiment, but
disagrees with perturbation theory, which predicts that
effective lateral dispersion is independent of P for large P.
The disagreement arises from the fact that perturbation
theory is not valid in this domain. In general, perturba-
tion theory can be expected to work only if the difference
between an effective quantity and its initial value is small.
Also, in a problem with several parameters, one cannot
expand in powers of one of them, without regard to the
others. For the tracer problem, the difference between
D.s and Dy is a function not only of p(0), but also of P.
One is not free to expand in powers of p(0) alone, since
no matter how small one chooses p(0), the difference be-
tween D,y and D, can be made large by the selection of a
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sufficiently large P. It is for this reason that our model of
the velocity fluctuations, which was derived from a per-
turbation expansion of Darcy’s law, gives rise to an
effective dispersion which cannot be treated by perturba-
tive methods.

VIII. SUMMARY

We have applied Feynman’s variational method, based
on path integrals, to problems arising from the steady-
state flow of a single fluid through a porous medium. Re-
sults obtained by the variational method are compared to
results obtained by first-order perturbation theory, which
is the technique usually applied to such problems. For
the permeability problem, and the tracer problem at
small P, the variational results are consistent with first-
order perturbative results. For the tracer problem at
large P, the variational method predicts the expected
linear dependence of the effective dispersion tensor on P,
which perturbation theory does not. This indicates that,
for the problems considered here and others like them, a
first-order perturbation expansion can be of limited utili-
ty. We expect that the variational method could be used
to study a wider range of problems for which perturba-
tion theory is inadequate, since development of the
method assumes only that the problem at hand can be
put into the path-integral formulation, and that the prob-
lem involves averaging over fluctuations. Our results for
the permeability problem were restricted in range to
p0)= %, due to the fact that we used a Gaussian, rather
than a log-normal, probability distribution function for
the permeability fluctuations. This substitution was
necessary in order to get a clean computational result,
and not in order to develop the method itself. It points
out the method’s chief drawback, which is that the fluc-
tuations that can be handled with reasonable ease are lim-
ited to those with Gaussian distributions. However, it
also obscures the method’s chief advantage, which is that
it works for any Gaussian distribution, and not merely
one for which the variance is small compared to the
mean, or one for which the fluctuations are weakly corre-
lated. This advantage suggests other problems for which
the method may prove useful, e.g., anomalous (non-
Brownian) dispersion, which can arise in flow through a
porous medium if the velocity fluctuations are strongly
correlated [17].
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APPENDIX: PERTURBATION THEORY

In this appendix we apply to the CDE the perturbative
method that King [4] applied to the permeability prob-
lem. The Green’s function for the CDE G (x,x(,t —¢,) is
defined by (4.1), where the dispersion tensor D(x)=D), is
constant, and the incompressible velocity
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u(x)=uytu (x) fluctuates. The unperturbed Green’s
function Gy(x—xg,¢ —1t,), defined by

%+uo-V—V'D0~V Golx—Xgpt —ty)

=8(X_XO)8(t_t0) Py (Al)

is the zero-order approximation to G(x,Xxq,? —t,). We
set the left-hand sides of Egs. (4.1) and (A1) equal to one
another, and consider the Fourier transform of the result-
ing equation:

G (k,kg,0)
=Gy(k,0)(27)%8(k +k,)

—Go(k,w)fé‘lﬁik-ul(qm(k—q,ko,m) . (A2)

J

where
fx= (zi:)—}e"k'*f(m (A3)
and
—_— dw —iwt
g=[2e g (o). (A4)

Equation (A2) can be solved by iteration. The zero-order
approximation is

G (k, ko, 0)=Go(k,0)(27)*8(k+k,) ;

this is fed back into (A2) under the integration to get the
first-order approximation, the first-order approximation
is fed back into (A2) under the integration to get the
second-order approximation, and so on. We obtain a
series solution of (A2):

G (k, kg, 0)=Gy(k,0)(27)’8(k+ko)— Go(k,@)ik-u;(k+ko)G o —kg,o)

—Go(k,w)f(%Tq)gk-ul(q)Go(k—q,m)(—ko)-ul(k—q+k0)G0(—ko,co)+ . (A5)

The Fourier-space correlation function for the velocity fluctuations is given by (3.4). The average of G (k,kq,®) will be

proportional to (27)*8(k +k,), so we define

(G (k,ko,0)) =(G(k,0))(2m)’5(k+k) . (A6)
Finally, taking the average of (A5), we get

(G(k,0))=G,(k,0)—G3(k,0) [ élf);p(qz)Go(k—q,w)k-(l—ﬁ'&i)'uouo-(l—aﬁ)-k+ R (A7)
The information concerning { G (k,w)) can be more easily understood if it is differently arranged. From Eqgs. (A1),
(A3), and (A4),

Golk,w)= : (A8)

k'Do'k+in'k—i(l) )

This suggests that (G (k,®)) would be less convenient to examine than its inverse, which can be obtained by algebraic

inversion of (A7):

(G(k,w))'1=k-D0-k+iuo-k—iw+f(—%Tg)gp(qZ)Go(k—q,w)k-(I—aﬁ)-uOuo-(I—ﬁﬁ)-k+ e (A9)

Notice that the integral in (A9) is of the form k-F(k,)-k; in fact, the contribution of any higher-order term is also of
this form. Thus we define an effective dispersion tensor D g(k,):

(G(k,0)) '=k-Dgk,0)k+ivgk—io,

(A10)

where (A10) should be considered in conjunction with (A9). We wish to find the large-distance and long-time proper-

ties, and so consider D.40,0).
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